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Problem 1. (a) Prove Abel’s Theorem: Let
∑
an(z−a)n have radius of convergence 1 and

suppose that
∑
an converges to A. Prove that

lim
r→1−

∑
anr

n = A.

(b) Use Abel’s theorem to prove that log 2 = 1− 1
2

+ 1
3
− ...

Proof. (a) WLOG, we can assume that a = 0. Let

sN =
N∑
n=0

an

Then we know that sN → A as N → ∞. Note that an = sn − sn−1 for n ≥ 1. Fix r < 1.
Now,

N∑
n=0

anr
n = a0 +

N∑
n=1

(sn − sn−1)rn = a0(1− r) +
N−1∑
n=1

sn(rn − rn+1) + sNr
N

for all N ≥ 1. Taking the 1− r outside from the summation, we get

N∑
n=0

anr
n = (1− r)

N−1∑
n=0

snr
n + sNr

N .

Letting N →∞, we get ∑
anr

n = (1− r)
∑

snr
n

So we just have to show that the RHS above converges to A as r → 1−. Let ε > 0 be
arbitrary. Let M ∈ N be such that |sn −A| ≤ ε/2 for all n ≥M. Since sn → A, there exists
C > 0 such that |sn − A| ≤ C for all n ≥ 0. We have∣∣∣∣(1− r)∑ snr

n − A
∣∣∣∣ =

∣∣∣∣(1− r)∑(sn − A)rn
∣∣∣∣

≤ (1− r)
M−1∑
n=0

|sn − A|rn + (1− r)
∞∑

n=M

|sn − A|rn ≤ C(1− rM) +
εrM
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Choose r such that 1− rM ≤ ε
2C
. We then have∣∣∣∣(1− r)∑ snr

n − A
∣∣∣∣ ≤ ε.

This completes the proof.

(b) We know that
∑ (−1)n+1

n
converges by the alternating test. Also, if an = (−1)n

n
, then

lim sup |an|1/n = 1, so the radius of convergence of the series
∑
anz

n is 1. Suppose that
A := 1− 1

2
+ 1

3
− .... Then by part (a),

lim
r→1−

∑ (−1)n+1

n
rn = A.

But we know that
∑ (−1)n

n+1
rn = log(1 + r) for −1 < r < 1. So A = log 2.

Problem 2. Let f be an entire function and suppose that there is a constant M, an R > 0,
and an integer n ≥ 1 such that |f(z)| ≤ M |z|n for |z| > R. Show that f is a polynomial of
degree ≤ n.

Proof. Since f is bounded in the compact set {|z| ≤ R}, there exists M ′ such that |f(z)| ≤
M ′ for |z| ≤ R. Let k > n. Let R′ > R be arbitrary. Then, by Cauchy’s estimate, we have

|f (k)(0)| ≤ k! max(M ′,M(R′)n)

(R′)k

Since this holds for all R′ > R, taking the limit as R′ → ∞, we get |f (k)(0)| = 0 because
k > n. This implies that f (k)(0) = 0 for all k > n. We know that f, being entire, has a power
series expansion around 0, say

∑
anz

n with ak = 1
k!
f (k)(0) = 0 for all k > n. This implies

that f is a polynomial of degree ≤ n.

Problem 3. Let U : C → R be a harmonic function such that U(z) ≥ 0 for all z in C;
prove that U is constant.

Proof. Since U is harmonic, we can find a V (harmonic conjugate) such that f = U + iV is
entire. Then the function g = f + 1 is also entire and never zero as its real part is always
≥ 1. So 1

g
is also entire. But note that∣∣∣∣ 1

g(z)

∣∣∣∣ =
1√

(U(z) + 1)2 + V (z)2
≤ 1

U(z) + 1
≤ 1

for all z ∈ C. This implies that 1
g
, hence g, and hence f is constant, by Liouville’s theorem.

Problem 4. Show that the Integral Formula follows from Cauchy’s Theorem.
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Proof. Suppose that Cauchy’s Theorem holds. Let G be an open subset of C and f : G→ C
an analytic function. If γ1, ..., γm are closed rectifiable curves in G such that n(γ1;w) + ...+
n(γm;w) = 0 for all w in C \G, then we want to show that for a ∈ G \ ∪mk=1{γk}, we have

f(a)
m∑
k=1

n(γk; a) =
m∑
k=1

1

2πi

∫
γk

f(z)

z − a
dz

Fix a ∈ G \ ∪mk=1{γk}. Define the function g : G→ C by

g(z) =

{
f(z)−f(a)

z−a if z 6= a

f ′(a) if z = a.

Then g is analytic. We apply Cauchy’s theorem to g. We then have

m∑
k=1

∫
γk

g = 0.

But we know that
m∑
k=1

∫
γk

g =
m∑
k=1

∫
γk

f(z)− f(a)

z − a
dz

=
m∑
k=1

∫
γk

f(z)

z − a
dz − f(a)

m∑
k=1

∫
γk

1

z − a
dz

=
m∑
k=1

∫
γk

f(z)

z − a
dz − 2πif(a)

m∑
k=1

n(γk; a).

This completes the proof.

Problem 5. Let G be a region and suppose fn : G→ C is analytic for each n ≥ 1. Suppose
that {fn} converges uniformly to a function f : G→ C. Show that f is analytic.

Proof. Since analyticity is a local property, it is enough to prove that f is analytic on each
open disk contained in G. So, WLOG, we assume G = B(a;R). Let T be any triangular
path in G. Then for w ∈ C \G, n(T ;w) = 0 by Theorem 4.4. So, by Cauchy’s theorem, we
know that for all n ≥ 1, ∫

T

fn = 0.

Now since a uniform limit of continuous functions is continuous, we know that f is continuous.
We apply Lemma 2.7 to conclude that ∫

T

f = 0.

Since T was arbitrary, by Morera’s theorem, we know that f is analytic on G.
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