Solutions: Homework 6

Nandagopal Ramachandran

December 3, 2019

Problem 1. (a) Prove Abel's Theorem: Let $\sum a_{n}(z-a)^{n}$ have radius of convergence 1 and suppose that $\sum a_{n}$ converges to A. Prove that

$$
\lim _{r \rightarrow 1^{-}} \sum a_{n} r^{n}=A
$$

(b) Use Abel's theorem to prove that $\log 2=1-\frac{1}{2}+\frac{1}{3}-\ldots$

Proof. (a) WLOG, we can assume that $a=0$. Let

$$
s_{N}=\sum_{n=0}^{N} a_{n}
$$

Then we know that $s_{N} \rightarrow A$ as $N \rightarrow \infty$. Note that $a_{n}=s_{n}-s_{n-1}$ for $n \geq 1$. Fix $r<1$. Now,

$$
\sum_{n=0}^{N} a_{n} r^{n}=a_{0}+\sum_{n=1}^{N}\left(s_{n}-s_{n-1}\right) r^{n}=a_{0}(1-r)+\sum_{n=1}^{N-1} s_{n}\left(r^{n}-r^{n+1}\right)+s_{N} r^{N}
$$

for all $N \geq 1$. Taking the $1-r$ outside from the summation, we get

$$
\sum_{n=0}^{N} a_{n} r^{n}=(1-r) \sum_{n=0}^{N-1} s_{n} r^{n}+s_{N} r^{N}
$$

Letting $N \rightarrow \infty$, we get

$$
\sum a_{n} r^{n}=(1-r) \sum s_{n} r^{n}
$$

So we just have to show that the RHS above converges to A as $r \rightarrow 1^{-}$. Let $\epsilon>0$ be arbitrary. Let $M \in \mathbb{N}$ be such that $\left|s_{n}-A\right| \leq \epsilon / 2$ for all $n \geq M$. Since $s_{n} \rightarrow A$, there exists $C>0$ such that $\left|s_{n}-A\right| \leq C$ for all $n \geq 0$. We have

$$
\begin{aligned}
&\left|(1-r) \sum s_{n} r^{n}-A\right|=\left|(1-r) \sum\left(s_{n}-A\right) r^{n}\right| \\
& \leq(1-r) \sum_{n=0}^{M-1}\left|s_{n}-A\right| r^{n}+(1-r) \sum_{n=M}^{\infty}\left|s_{n}-A\right| r^{n} \leq C\left(1-r^{M}\right)+\frac{\epsilon r^{M}}{2}
\end{aligned}
$$

Choose r such that $1-r^{M} \leq \frac{\epsilon}{2 C}$. We then have

$$
\left|(1-r) \sum s_{n} r^{n}-A\right| \leq \epsilon .
$$

This completes the proof.
(b) We know that $\sum \frac{(-1)^{n+1}}{n}$ converges by the alternating test. Also, if $a_{n}=\frac{(-1)^{n}}{n}$, then $\limsup \left|a_{n}\right|^{1 / n}=1$, so the radius of convergence of the series $\sum a_{n} z^{n}$ is 1 . Suppose that $A:=1-\frac{1}{2}+\frac{1}{3}-\ldots$. Then by part (a),

$$
\lim _{r \rightarrow 1^{-}} \sum \frac{(-1)^{n+1}}{n} r^{n}=A
$$

But we know that $\sum \frac{(-1)^{n}}{n+1} r^{n}=\log (1+r)$ for $-1<r<1$. So $A=\log 2$.

Problem 2. Let f be an entire function and suppose that there is a constant M, an $R>0$, and an integer $n \geq 1$ such that $|f(z)| \leq M|z|^{n}$ for $|z|>R$. Show that f is a polynomial of degree $\leq n$.

Proof. Since f is bounded in the compact set $\{|z| \leq R\}$, there exists M^{\prime} such that $|f(z)| \leq$ M^{\prime} for $|z| \leq R$. Let $k>n$. Let $R^{\prime}>R$ be arbitrary. Then, by Cauchy's estimate, we have

$$
\left|f^{(k)}(0)\right| \leq \frac{k!\max \left(M^{\prime}, M\left(R^{\prime}\right)^{n}\right)}{\left(R^{\prime}\right)^{k}}
$$

Since this holds for all $R^{\prime}>R$, taking the limit as $R^{\prime} \rightarrow \infty$, we get $\left|f^{(k)}(0)\right|=0$ because $k>n$. This implies that $f^{(k)}(0)=0$ for all $k>n$. We know that f, being entire, has a power series expansion around 0 , say $\sum a_{n} z^{n}$ with $a_{k}=\frac{1}{k!} f^{(k)}(0)=0$ for all $k>n$. This implies that f is a polynomial of degree $\leq n$.

Problem 3. Let $U: \mathbb{C} \rightarrow \mathbb{R}$ be a harmonic function such that $U(z) \geq 0$ for all z in \mathbb{C}; prove that U is constant.

Proof. Since U is harmonic, we can find a V (harmonic conjugate) such that $f=U+i V$ is entire. Then the function $g=f+1$ is also entire and never zero as its real part is always ≥ 1. So $\frac{1}{g}$ is also entire. But note that

$$
\left|\frac{1}{g(z)}\right|=\frac{1}{\sqrt{(U(z)+1)^{2}+V(z)^{2}}} \leq \frac{1}{U(z)+1} \leq 1
$$

for all $z \in \mathbb{C}$. This implies that $\frac{1}{g}$, hence g, and hence f is constant, by Liouville's theorem.
Problem 4. Show that the Integral Formula follows from Cauchy's Theorem.

Proof. Suppose that Cauchy's Theorem holds. Let G be an open subset of \mathbb{C} and $f: G \rightarrow \mathbb{C}$ an analytic function. If $\gamma_{1}, \ldots, \gamma_{m}$ are closed rectifiable curves in G such that $n\left(\gamma_{1} ; w\right)+\ldots+$ $n\left(\gamma_{m} ; w\right)=0$ for all w in $\mathbb{C} \backslash G$, then we want to show that for $a \in G \backslash \cup_{k=1}^{m}\left\{\gamma_{k}\right\}$, we have

$$
f(a) \sum_{k=1}^{m} n\left(\gamma_{k} ; a\right)=\sum_{k=1}^{m} \frac{1}{2 \pi i} \int_{\gamma_{k}} \frac{f(z)}{z-a} d z
$$

Fix $a \in G \backslash \cup_{k=1}^{m}\left\{\gamma_{k}\right\}$. Define the function $g: G \rightarrow \mathbb{C}$ by

$$
g(z)= \begin{cases}\frac{f(z)-f(a)}{z-a} & \text { if } z \neq a \\ f^{\prime}(a) & \text { if } z=a\end{cases}
$$

Then g is analytic. We apply Cauchy's theorem to g. We then have

$$
\sum_{k=1}^{m} \int_{\gamma_{k}} g=0
$$

But we know that

$$
\begin{aligned}
& \sum_{k=1}^{m} \int_{\gamma_{k}} g=\sum_{k=1}^{m} \int_{\gamma_{k}} \frac{f(z)-f(a)}{z-a} d z \\
= & \sum_{k=1}^{m} \int_{\gamma_{k}} \frac{f(z)}{z-a} d z-f(a) \sum_{k=1}^{m} \int_{\gamma_{k}} \frac{1}{z-a} d z \\
= & \sum_{k=1}^{m} \int_{\gamma_{k}} \frac{f(z)}{z-a} d z-2 \pi i f(a) \sum_{k=1}^{m} n\left(\gamma_{k} ; a\right) .
\end{aligned}
$$

This completes the proof.
Problem 5. Let G be a region and suppose $f_{n}: G \rightarrow \mathbb{C}$ is analytic for each $n \geq 1$. Suppose that $\left\{f_{n}\right\}$ converges uniformly to a function $f: G \rightarrow \mathbb{C}$. Show that f is analytic.

Proof. Since analyticity is a local property, it is enough to prove that f is analytic on each open disk contained in G. So, WLOG, we assume $G=B(a ; R)$. Let T be any triangular path in G. Then for $w \in \mathbb{C} \backslash G, n(T ; w)=0$ by Theorem 4.4. So, by Cauchy's theorem, we know that for all $n \geq 1$,

$$
\int_{T} f_{n}=0 .
$$

Now since a uniform limit of continuous functions is continuous, we know that f is continuous. We apply Lemma 2.7 to conclude that

$$
\int_{T} f=0 .
$$

Since T was arbitrary, by Morera's theorem, we know that f is analytic on G.

